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The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 
2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-
like growth factor-binding proteins) and insulin are essential to muscle metabolism and most 
aspects of male and female reproduction. Insulin-like growth factor and insulin play important 
roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation 
in mammals. In order to better understand the local factors that regulate equine physiology, 
such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation), 
real-time reverse transcription polymerase chain reaction assays for quantification of equine 
insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were 
developed. The assays were sensitive: 192 copies/µL and 891 copies/µL for insulin-like growth 
factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95% limit of 
detection), and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the 
insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-
like growth factor 1 receptor and six logs for insulin receptor). This allowed for analysis of 
very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like 
growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in 
endometrium, lung and spleen samples, whilst high concentrations were detected in heart, 
muscle and kidney samples, this was most likely due to the high level of glucose metabolism 
and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 
receptor and insulin receptor messenger ribonucleic acid expression have been shown to work 
on equine tissue and will contribute to the understanding of insulin and insulin-like growth 
factor 1 receptor physiology in the horse.

Introduction
Gene expression analysis is of fundamental importance in biomedical research (Bustin 2002). The 
various methods used include: Northern blotting, in situ hybridisation, ribonuclease (RNAse) 
protection assays, complementary deoxyribonucleic acid (cDNA) arrays and real-time reverse 
transcription polymerase chain reaction (RT-PCR) (Giulietti et al. 2001). Polymerase chain reaction 
based assays are the most commonly used method for characterising gene expression and 
comparing messenger ribonucleic acid (mRNA) levels in different samples (Bustin 2002). 

The polypeptide hormones, insulin-like growth factor 1 (IGF1) and insulin (INS) are similar in 
structure (Rinderknecht & Humbel 1978; Torres et al. 1995). They elicit similar biological responses, 
regulate cell proliferation and mediate metabolic signals, but with differing potencies (Morgan, 
Jarnagin & Roth 1986). These ligands cross-react competitively with IGF1R receptor (IGF1R) and 
INS receptor (INSR) (Torres et al. 1995). 

IGF1R and INSR are closely related members of the tyrosine kinase receptor super-family (Garrett 
et al. 1998). These receptors are expressed in almost all mammalian cell types and are large trans-
membrane tetrameric glycoproteins, which consist of two alpha-subunits and two beta-subunits 
(α2β2) and are linked by disulfide bonds (Garrett et al. 1998). Each alpha-subunit contains the 
extra-cellular ligand-binding site and is about 125 kilo-dalton (kDa) – 140 kDa in size. Each beta-
subunit has a trans-membrane domain and the catalytic intra-cellular tyrosine kinase domain is 
about 95 kDa – 97 kDa. Tyrosine kinases are enzymes that phosphorylate the tyrosine portion 
of proteins (Abbott, Bueno, Pedrini & Murray et al. 1992). These receptors, like their ligands, are 
encoded by distinct genetic loci, which are believed to have evolved from a common ancestral 
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gene (Kim & Accili 2002). They share > 50% overall amino 
acid sequence identity and 84% identity with tyrosine kinase 
domains (Jones & Clemmons 1995; Pandini et al. 2002). 

In domestic animals, IGF1 and INS play essential roles 
in reproduction (Velazquez, Spicer & Wathes 2008). To 
understand the roles IGF1 and INS play in the local regulation 
of the formation and competence of equine oocytes and 
spermatozoa, real-time RT-PCR assays were developed to 
evaluate IGF1R and INSR gene expression in equine tissues.

Materials and methods
Sample collection
To develop the assays, testes were harvested from each of 
three healthy Friesian, Thoroughbred, and Warmblood 
stallions that had been admitted for routine orchidectomies 
at the Onderstepoort Veterinary Academic Hospital (OVAH). 
To evaluate the assays, tissue samples from four mixed-breed 
adult horse mares were collected immediately after slaughter 
at a horse abattoir. The samples collected were obtained 
from the liver, spleen, kidney, lung, heart, skeletal muscle 
and endometrium.

All tissue samples were collected using sterile forceps and 
a surgical blade and the blocks (5 mm × 5 mm × 5 mm) of 
tissue were placed into plastic 2.0 mL cryotubes (Nunc, 
USA), containing approximately 10 volumes of RNAlater® 
(Ambion, USA). The samples were kept at 4 °C for 24 hours 
and then stored at -80 °C until analysis.

RNA extraction
To extract RNA, a sample of tissue was thawed at room 
temperature and approximately 30 mg of tissue was placed 
into a MagNA Lyser® Green Beads tube (Roche, Germany) 
containing 900 μL RLT buffer (Qiagen, USA) and 9 μL 
14.3 M β-mercaptoethanol (β-ME) (Sigma). The samples were 
homogenised with a MagNA Lyser® Instrument (Roche, 
Germany) and two runs of 7000 revolutions per minute 
(rpm) for 45 seconds were performed; they were cooled on 
ice for 2 minutes between runs. Samples were kept at room 
temperature for 30 minutes, then centrifuged at 14 000 rpm 
for 3 minutes. The supernatant was removed (approximately 
600 μL) and transferred to 1.5 mL micro-centrifuge tubes. 

RNA was extracted from the samples using the RNeasy® Mini 
kit (Qiagen, USA) according to the manufacturer’s instructions 
and eluted in 50 μL nuclease-free water. RNA concentration 
and purity was determined from the A260/A280 ratio, as 
measured by a NanoDrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific, USA). 

Design of primers for amplification and 
sequencing of equine receptor mRNA
The complete Equus caballus genome had not been published 
at the time of this study. Only a trace-file archive of the 
genome was available publically on GenBank (NCBI) (n.d.). 
The human mRNA sequences for IGF1R (NM 000875) and 

INSR (NM 000208) were assumed to be closely related 
to the equine equivalents and were used to perform a 
discontinuous megablast (Altschul et al. 1990) with the equine 
trace-file archive to identify equine IGF1R and INSR trace 
file sequences. Trace files were assembled using the Staden 
package (Staden 1996; Staden, Beal & Bonfield 2000). A 
local alignment between each equine genomic DNA contig 
and the respective human mRNA sequence was performed 
using the Water program in EMBOSS (Rice, Longden & 
Bleasby 2000). Equine exons were identified as regions with 
a high degree of alignment between the human mRNA and 
the equine DNA sequences. The non-exon sequences were 
deleted from the trace file and the position of the exon-intron 
junctions noted. The exons were reassembled to yield a 
putative equine mRNA sequence. The positions of the exon-
exon junctions corresponded with the human exon-exon 
junctions. The putative equine mRNA sequences were used 
to design primers with the aid of FastPCR® software v3.6.89 
(Kalender 2007). 

IGF1R and INSR mRNA amplification and 
sequencing
A one-step reverse transcription polymerase chain reaction 
(RT-PCR) for IGF1R and INSR mRNA was performed with 
the GeneAmp® Gold RNA PCR Core Kit (Lifetech, USA) 
according to the manufacturer’s instructions. Two 25 μL 
reactions were performed per RNA sample (2 µL) for each 
primer pair. Cycling conditions for the RT-PCR were 42 °C 
for 12 minutes, 95 °C for 10 minutes and 40 cycles at 94 °C for 
20 seconds, 57 °C for 30 seconds and 72 °C for 60 seconds. This 
was followed by a final extension step at 72 °C for 7 minutes 
and a hold at 4 °C on a GeneAmp® PCR System 9700 (Lifetech, 
USA). Amplification of the target DNA was confirmed by 
running five μL of PCR product on an ethidium bromide-
stained 1.5% agarose gel, electrophoresed at 110 volts and the 
DNA was visualised by UV trans-illumination. The two RT-
PCR reactions per sample were combined and purified using 
a QIAquick® PCR purification kit (Qiagen, USA), according 
to the manufacturer’s instructions. The purified DNA was 
eluted in 50 µL elution buffer (EB) (Qiagen, USA).

The same primers used for amplification were used for direct 
sequencing. A BigDye® Terminator v3.1 cycle sequencing kit 
(Lifetech, USA) was used according to the manufacturer’s 
instructions. Phred (Ewing & Green 1998; Ewing et al. 1998) 
and the Staden package (Staden 1996; Staden, Beal & Bonfield 
2000) were used for base calling and sequence assembly. The 
assembled IGF1R and INSR sequence for each of the three 
breeds of stallion was aligned with the equivalent human 
mRNA sequence using ClustalW software (EMBL-European 
Bioinformatics Institute n.d.). 

Quantitative two-step real-time RT-PCR 
The sequences generated were used with Primer Express® 
software (Lifetech, USA) to design equine IGF1R and INSR 
mRNA primers and TaqMan® TAMRA™ probes (Lifetech, 
USA). The primers were designed to amplify 68 and 74 
nucleotide regions of the respective IGF1R and INSR genes. 
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The probes were designed to span exon-exon junctions 
to ensure detection of mRNA amplification over genomic 
DNA. The probes were labeled with different fluorescent 
dyes (FAM and VIC) to allow differentiation between IGF1R 
and INSR. 

TaqMan® reverse transcription reagents (Lifetech, USA) 
were used as described in the supplied protocol. Reverse 
transcription was performed with random hexamers. A 
volume of 7.7 μL RNA was added to the reagents up to a total 
volume of 20 μL/reaction. cDNA from the tissue samples 
(liver, spleen, heart, lung, kidney, muscle and endometrium) 
collected from four horses was placed in a 9700 thermal 
cycler (Lifetech, USA) and the following conditions were 
used: 25 °C for 10 minutes, 42 °C for 30 minutes, 95 °C for 5 
minutes and a hold at 4 °C.

A LightCycler® TaqMan® Master kit (Roche, Germany) was 
used as described in the supplied protocol for the real-
time PCR. Five μL of cDNA, a final concentration of 0.5 
μM primers and a final concentration of 0.1 μM probe were 
used per reaction. Cycling conditions in a LightCycler 2.0 
(Roche, Germany) were as described in the protocol, with 
an annealing temperature of 60 °C. With each sample tested, 
a no-RT control was run as a control to screen for genomic 
DNA contamination. RNA copies per milligram of tissue 
were calculated using the following formulae:

[Eqn 1]

[Eqn 2]

[Eqn 3]

The volume (μL) of RNA extracted (indicated with a) using 
the RNeasy spin column (Qiagen, USA), b indicated 7.7 μL 
of RNA that were converted into 20 μL of cDNA and 5 μL of 
cDNA used or reaction and c indicates the 30 mg of tissue 
was homogenised in 900 μL RLT buffer (Qiagen, USA) and 
600 μL used for RNA extraction.

Generation of IGF1R and INSR standard curves
The real-time RT-PCR products were purified with the 
QIAquick PCR purification kit (Qiagen, USA) and quantified 
using a NanoDrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific, USA). The amplicons were cloned using the 
pGEM® - T Easy Vector System (Promega, USA) according to 
the manufacturer’s instructions. The plasmids were linearised 
with Sal 1 restriction enzyme. Plasmids were sequenced 
using T7 and SP6 primers to ensure the absence of mutations 
in the inserts. The linearised plasmid was transcribed using 
the MEGAshortscript™ Kit (Ambion, USA) according to the 
manufacturer's instructions.

RNA was resuspended in 20 μL TE buffer (Ambion, USA) and 
quantified using a NanoDrop ND-1000 spectrophotometer, 

a

b c

copies / reaction RNAcopies / mg tissue
RNA / reaction mg tissueextracted

= ×

copies / reaction 50copies / mg tissue
7.7 20 5 mg tissuesample 600 900

= ×
÷ × × ÷

copies / reaction 50copies / mg tissue
1.925 mg tissuesample

= ×

using an extinction coefficient of 33 for small RNA < 200 
nucleotides (MEGAshortscript™ protocol). The RNA 
concentrations and the molecular weight of the transcripts 
were used to calculate the RNA copy numbers. Aliquots of 
ten-fold dilution series (1 × 100 to 1 × 109 copies/μL) were 
prepared and stored at -80 °C until needed. The control step for 
the presence of plasmid DNA in the serial RNA dilutions was 
checked by running real-time PCR on the RNA, without first 
performing a reverse transcription reaction (no-RT control).

Real-time RT-PCR of the standard dilution series, using 
7.7 μL of RNA per reaction, was repeated in triplicate on two 
separate days. All the data were used to calculate a linear 
regression equation in Microsoft Excel® (Microsoft, USA) of 
cycle threshold (CT) against log copy number. The regression 
equation was used to calculate mRNA copy numbers per 
reaction from the CT. Efficiency of the assay was calculated 
using the following equation: 

Efficiency = 10-1/slope – 1.                             [Eqn 4]

The limit of detection was defined as the copy number 
concentration where 95% of the RT-PCR’s would yield a 
positive result (CT ≤ 40) and was calculated using the Karber 
equation (Karber 1931).

Results
Amplification and sequencing of equine IGF1R 
and INSR mRNA
Two pairs of primers were designed to amplify an 
approximate 1000 base pair (bp) region of the putative equine 
IGF1R mRNA in two overlapping segments: Forward_1 (gct 
aat tgt gaa gtg gaa ccc ac), Reverse_1 (gta caa agt gaa tgg ccg 
gag), Forward_2 (aca atg tca cag acc cag agg ag), Reverse_2 
(aga aca cag gat cag tcc acg ac); and one pair to amplify a 488 
bp region of the putative INSR mRNA: Forward_3 (tga tgt 
gta ccc cgt gcc tgg) and Reverse_3 (tgg tct tca ggg cga tgt cgt).
A region of both equine IGF1R and INSR mRNA that 
spanned exon-exon junctions was amplified by PCR and 
products of the expected size were obtained (Figure 1). These 

 

IGF1R
(1878 – 2398)

FR    WB    TB FR    WB    TB FR    WB    TB +      -

IGF1R
(2289 – 2764)

INSR
(1037 – 1525)

Control

   

FR, Friesan; WB, Warmblood; TB, Thoroughbred; IGF1R, insulin-like growth factor 1 receptor; 
INSR, insulin receptor; RT-PCR, real-time reverse transcription polymerase chain reaction; 
mRNA, messenger ribonucleic acid; DNA, deoxyribonucleic acid.
Note: Amplified regions of IGF-1R and INSR mRNA are indicated in legends.

FIGURE 1: Bromide-stained 1.5% agarose gel of IGF1R (520 and 453 bp) and INSR 
(488 bp) PCR products, with positive (300 bp) and negative RT-PCR controls and 
DNA ladders in first and last wells.
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RT-PCR products were visualised on a gel; for IGF1R the 
expected sizes were 520 bp and 453 bp, and for INSR 488 bp. 
The PCR products were sequenced and the sequences 
obtained for IGF1R and INSR mRNA were identical for each 
breed of horse. Basic Local Alignment Search Tool (BLAST) 
(Altschul et al. 1990) showed a 92% and 93% identity of the 
equine IGF1R and INSR mRNA sequences with the human 
homologs (Table 1). 

Quantitative two-step real-time RT-PCR
The equine mRNA primers and TaqMan® TAMRA™ (Inqaba 
Biotechnical Industries, South Africa) probes that were 
designed were: 

IGF1R – forward primer (cag tgc ctc caa ctt cgt ctt), reverse 
primer (ccg gcc cag gaa tgt ca) and probe (VIC-caa gaa cca 
tgc ctg cag aag gag ca), and the product size amplified was 
67 nucleotides. 

INSR – forward primer (tcc gga agt tac gcc taa ttc), reverse 
primer (ctg gtt gtc caa ggc gta ga) and probe (FAM-tga gta gtt 
ccc gat ttc caa ggt ctc t), and the product size amplified was 
73 nucleotides (Figure 2). 

IGF1R and INSR standard curves
Clones with the real-time RT-PCR product insert were 
sequenced to confirm the presence and sequence of the insert. 
No mutations in the clones were detected.

Transcription of the plasmid yielded 2.40 μg RNA/μL and 
4.51 μg RNA/μL for IGF1R and INSR respectively.

Plasmid DNA contamination was evaluated by running 
a no-RT control and a no template control in the real-time 
PCR. Plasmid DNA was detected, but for IGF1R, the DNA 
concentration was 9800, and for INSR 76 000 times less than 
the RNA; this was therefore considered to not be significant 
(Table 2). 

The calculated regression equation for the IGF1R dilution 
series was: 

y = -3.301x + 45.59                 [Eqn 5] 

The calculated regression equation for the INSR dilution 
series was:

y = -3.444x + 47.42 (Figure 3).                 [Eqn 6]

The efficiency and sensitivity of the IGF1R assay are 1.01 and 
192 copies/μL and for the INSR assay 0.95 and 891 copies/
μL respectively.

Application of quantitative real-time RT-PCR 
assays
The log transformed mean IGF1R mRNA concentration 
of equine (n = 4) tissue samples (liver, spleen, heart, lung, 
kidney, muscle and endometrium) was 104.91 ± 101.04 standard 
deviations (SD) copies per mg tissue with a range of 103.66 

TABLE 2: Comparison between RT and no-RT controls, using cycle threshold (CT) 
values of an IGF1R and INSR dilution series.
Dilution series Log copies /μL Cycle threshold

CT (RT) CT (no-RT)

INSR 9 18.55 31.98

8 22.46 35.33

7 27.61 -

6 30.99 -

5 35.05 -

4 38.39 -

3 - -

2 - -

IGF1R 9 16.49 30.32

8 19.78 34.04

7 23.89 35.89

6 26.81 -

5 29.65 -

4 33.61 -

3 36.10 -

2 38.50 -

CT, cycle threshold; RT, reverse transcription.

TABLE 1: Results of the discontiguous megablast of the real-time RT-PCR product 
sequence showing the five most similar IGF1R and INSR mRNA sequences.
Sequence Species Query 

coverage (%)
Maximum 

identity (%)
GenBank accession 

number

IGF1R mRNA Equus caballus 100 100 -

Sus scrofa 97 98 NM_214172

Bos taurus 97 96 NM_001244612

Canis familiaris 97 96 XM_545828

Homo sapiens 97 93 NM_000875

INSR mRNA Equus caballus 100 100 -

Pan troglodytes 100 93 XM_512323

Homo sapiens 100 91 NM_000208

Macaca mulatta 100 91 XM_001094337

Ovis aries 100 91 XM_004008549

 

 

 

 

 

 

 

 

 

 

 

 

IGF1R, insulin-like growth factor 1 receptor; INSR, insulin receptor; RT-PCR, real-time reverse 
transcription polymerase chain reaction.

FIGURE 2: Location and sequence of primers (arrows) and TaqMan® TAMRA™ 
probes (blocks) designed for quantification, (a) IGF1R and (b) INSR by real-time 
RT-PCR.

b

a

Exon-exon junction

Exon-exon junction
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(spleen) to 106.19 (heart) (Figure 4). Using RNA as the unit of 
measurement, the mean IGF1R mRNA concentration was 
104.78 ± 101.63 SD per μg RNA with a range of 102.92 (spleen) to 
106.83 (muscle). In all cases, with the exception of heart and 
muscle, the IGF1R mRNA concentrations per mg tissue were 
higher than the concentration per μg RNA.

Discussion
This study describes the development of real-time RT-PCR 
assays for the preliminary characterisation of IGF1R and 
INSR mRNA expression in selected equine tissues. In order 
to develop these real-time RT-PCR assays, equine IGF1R and 
INSR trace files were identified from a megablast with human 
IGF1R and INSR mRNA. This initial step was necessary as the 
only public horse genome data that were available at the time 
of this study was a DNA trace-file archive, accessible through 
GenBank (NCBI) (n.d.). This increased the complexity of 
the study. There is more equine genome data available 
now, but much of the mRNA sequence data are predicted, 
whereas the equine mRNA data used in this study were 
sequenced directly. 

The assays were designed to span exon-exon junctions to 
preferentially amplify mRNA over genomic DNA. Exons 
were identified as areas with a high degree of identity 
between the equine DNA trace-files and the human mRNA 
sequences. Large regions of non-similar sequences separated 
the exons in the equine trace files. The exon-exon junctions 
of the equine mRNA were identical to that of the human, 
suggesting a common homology. 

Both assays were efficient, sensitive and had a broad linear 
range of detection (seven logs for IGF1R and six logs for 
INSR). The assays worked well in our hands and were 
sensitive and specific for the detection of equine IGF1R and 
INSR mRNA.

IGF1R and INSR were present on the surface of almost all 
cell types (Desoye et al. 1997; LeRoith et al. 1995; Seino, Seino 
& Bell 1990). However, the expression of these receptors in 
different tissue types may vary depending on the metabolic 
and mitogenic characteristics of the cells within these tissues 
and there may be variation between individual animals due 
to age (Georgieva et al. 2003; Hess & Roser 2001; Lackey, 
Gray & Henricks 2000), nutritional state (Balage et al. 1990; 
LeRoith et al. 1995) and stage of reproductive cycle (Desoye 
et al. 1997; Ginther et al. 2003; Lackey et al. 2000; Shimizu et al. 
2008; Silva, Figueiredo & Van den Hurk 2009). In our study 
the IGF1R and INSR profiles in various equine tissues were 
similar. Low concentrations of both IGF1R and INSR mRNA 
were detected in endometrium, lung and spleen samples, 
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curves (from CT RT-PCR results).
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whilst high concentrations were detected in heart, muscle 
and kidney samples. The high level of INSR expression in 
the heart, muscle and kidney is probably associated with 
the high level of glucose metabolism and utilisation by these 
tissues. For all tissues, except the endometrium, the INSR 
mRNA concentrations were higher than the IGF1R mRNA 
concentrations. The mean INSR:IGF1R mRNA ratio was 
highest in the liver tissue (22:1) and lowest in the endometrial 
tissue (1:2). The liver manufactures most of the circulating 
IGF1 (Jones & Clemmons 1995; Navarro et al. 1999) and has 
the highest levels of IGF1 mRNA and peptide expression, but 
the lowest expression of IGF1R mRNA (Jones & Clemmons 
1995). It is highly probable that an organ manufacturing 
a hormone with an endocrine function will have a low 
concentration of receptors for that hormone. This would 
ensure that the hormone enters the general circulation and 
exerts its endocrine effect elsewhere in the body.

Conclusion
The sensitivities of the assays at 95% using the Karber 
equation are 192 copies/μL and 891 copies/μL for IGF1R 
mRNA and INSR respectively. This allows analysis of very 
small amounts of mRNA. However, for these assays to be 
reliable they need extensive and accurate optimisation. 
Hence, a study to describe the steps used to optimise and 
validate the assays for real-time RT-PCR of equine IGF1R 
and INSR mRNA is needed. Such a study should attempt to 
avoid co-amplification of genomic DNA, reduce inter-assay 
variability and be normalised to a relevant housekeeping 
gene. Measuring gene expression at the mRNA level requires 
the inclusion of a reliable housekeeper gene for accurate 
data interpretation (housekeeper genes are evenly expressed 
amongst different tissues of an organism, at different stages 
of development, between normal and diseased states and 
should not be affected by experimental treatment itself (e.g., 
beta-actin, glyceraldehyde-3-phosphate dehydrogenase and 
18S ribosomal RNA). The assays may then be used routinely 
and incorporated into gene expression research in the 
field of equine medicine, such as joint cartilage injury and 
repair, as well as in the field of equine reproduction, such 
as stallion fertility. Quantifying the amount of mRNA using 
real-time PCR enabled the measurement of differential gene 
expression, but the level of mRNA transcription may not be 
necessarily proportional to the level of mRNA translation 
due to RNA-binding translational activators and repressors. 
Hence, real-time PCR should be coupled to techniques for 
measuring or quantifying protein levels (TaqMan® Protein 
Assays, Western blotting, ELISA or immuno-precipitation 
immuno-fluorescence). 
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