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The global focus on wildlife as a major contributor to emerging pathogens and infectious 
diseases (EIDs) in humans and domestic animals is not based on field, experimental or 
dedicated research, but mostly on limited surveys of literature, opinion and the assumption 
that biodiversity harbours pathogens. The perceived and direct impacts of wildlife, from being 
a reservoir of certain human and livestock pathogens and as a risk to health, are frequently 
overstated when compared to the Global burden of disease statistics available from WHO, OIE 
and FAO. However organisms that evolve in wildlife species can and do spill-over into human 
landscapes and humans and domestic animal population and, where these organisms adapt to 
surviving and spreading amongst livestock and humans, these emerging infections can have 
significant consequences. Drivers for the spill-over of pathogens or evolution of organisms 
from wildlife reservoirs to become pathogens of humans and domestic animals are varied but 
almost without exception poorly researched. The changing demographics, spatial distribution 
and movements, associated landscape modifications (especially agricultural) and behavioural 
changes involving human and domestic animal populations are probably the core drivers of 
the apparent increasing trend in emergence of new pathogens and infectious diseases over 
recent decades. 

Introduction 
The global focus on wildlife as a major contributor to emerging pathogens and infectious diseases 
(EIDs) in humans and domestic animals is not based on field, experimental or dedicated research, 
but mostly on surveys of literature that report new diseases corrected for reporting bias (e.g. Jones 
et al. 2008; Jones et al. 2013). In addition to hotspot mapping, such publications link diseases to 
possible pathogen origins from various non-domestic animal species. The assessment of these 
reported trends in EIDs and their impacts is significantly biased by research regarding human 
immunodeficiency virus (HIV) and AIDS, severe acute respiratory syndrome (SARS) and highly 
pathogenic avian influenza (HPAI), all of which have an indirect wildlife link. Except for AIDS, 
the aforementioned diseases have taken a relatively small toll on human life but have incurred 
huge costs, mostly related to fear induced by perceived pandemic threats and high case fatality 
rates and resulting from the syndrome’s importance being amplified by global media. Political 
pressure has resulted in strong government responses and international investment in pathogen 
research and addressing the spread of these agents. However, it is surprising that little has been 
done so far to deal with the main drivers and amplifiers of the diseases, for example, through a shift 
in animal production systems or closure of key epidemiological nodes such as live or wet markets 
(Fournié et al. 2013). The potential for similar events remains or is even more likely than before, 
given the ever-expanding markets and associated domestic animal production systems, which 
are conducive to the evolution and amplification of new pathogens. This is further enhanced by 
the increasing movement and contact between humans, domestic animals and wildlife (Wallace 
& Kock 2012). 

Disease emergence factors and wildlife
Reported causes for and drivers of the apparent trends in disease emergence lack, in most cases, 
strong evidence-based research (Jones et al. 2013). However, there is circumstantial evidence 
to suggest that novel epidemics and disease syndromes are the result of changing agroecology 
and human behaviour and movements, intensifying interfaces with certain wildlife species and 
climate change (Roche & Guégan 2011). 

The inclusion of wildlife in the epidemiology and evolution of EIDs is justified (Keesing et al. 
2010), but the role of wildlife is often misrepresented. The idea that biodiversity is the origin 
of many infectious agents is stating the obvious: where else would new infectious agents come 
from? It is not that the ‘pathways’ for emergence are in any way unnatural; rather, it is the 
opportunities for emergence that are changing and probably on the increase. The most dramatic 
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example of this is the emergence of AIDS from the spillover 
of simian immunodeficiency virus from sooty mangabey 
and chimpanzees into humans and the subsequent genetic 
changes (through mutation, recombination or reassortment) 
enabling the evolution of human pathogens HIV-1 and 
HIV-2 (Gao et al. 1999). Bush meat, the fragmentation of forest 
and the development of road systems facilitated the virus’s 
spread to urban centres and eventually to the global human 
population, causing the most significant epidemic disease in 
modern times.

Wildlife species are a reservoir of some emerging pathogens, 
but zoonotic transmission is uncommon and often involves 
a domestic animal bridge (shown in brackets), for example 
Crimean–Congo haemorrhagic fever (livestock [Sang 2011]), 
Japanese encephalitis (pigs [Impoinvil et al. 2011]), nipah 
virus infection (pigs), hendra virus infection (horses [Field 
2010]), plague, trypanosomosis (livestock [Funk et al. 2013]). 
Some of these examples of emerging zoonoses are a direct 
result of human interference, for example, the establishment 
of the pig industry and fruit farms in areas with high-
density bat populations in the case of nipah virus (Pulliam 
et al. 2012). An additional driver of zoonotic emergence from 
wildlife is, the creation of wildlife habitats in high-density 
human settlements or recreational areas for example  lyme 
disease (Levi et al. 2012) in the United States of America and 
the slaughter and consumption of primates and other bush 
meat in African causes the spillover of ebola virus to humans 
(Leroy, Gonzalez & Baize 2011). It is suggested that such 
bridges have, over time, resulted in the establishment of a 
range of human diseases, for example diphtheria, measles, 
campylobacteriosis small pox, pertussis and mumps (Wolfe, 
Dunavan & Diamond 2007). The advent of modern livestock 
systems is also associated with diseases such as leptospirosis, 
cysticercosis and echinococcosis and an array of zoonotic 
infections by pathogens such as the Japanese encephalitis 
virus, highly pathogenic avian influenza viruses, norovirus, 
hepatitis E virus, Campylobacter spp., Escherichia coli O157:H7 
(toxin code) and the epidemic strain of Salmonella enterica 
serotype Typhimurium Definitive Type 104 (Altekruse, 
Cohen & Swerdlow 1997; Jones et al. 2013).

Figure 1 provides an estimate of global wildlife-related 
mortalities in humans as a proportion of total incidences 
in an average year. A log scale was used as the wildlife 
contribution would otherwise not appear in most cases, 
which is an indication of how rare they are.

Many wildlife species, from a wide range of taxa, act as 
temporary or intermediate disease hosts. They can transmit 
and amplify infections over space and time but are not long-
term reservoirs (Table 1). Occasionally, wildlife species are 
victims of or spillover hosts from domestic animals and even 
humans (Table 2). 

It is interesting that some infections are well tolerated 
by wild reservoir hosts, as illustrated by the association 
between wild birds and avian influenza viruses (Alexander 
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Note: Data estimated from statistics available from the World Health Organization (WHO), 
Food and Agriculture Organization (FAO) and the World Organisation for Animal Health (OIE). 
HPAI, highly pathogenic avian influenza; SARS, severe acute respiratory syndrome.

FIGURE 1: Global mortality estimates of infections from a wildlife source in 
humans as a proportion of total incidence. 

TABLE 1: Examples of wildlife taxa that are important hosts, carriers or vectors of human or domestic animal pathogens but not the maintenance hosts.
Taxon group or animal Pathogen Reference
African buffalo and artiodactyls Rift Valley fever virus Britch et al. (2013)
Greater kudu Rabies virus Bengis, Kock and Fischer (2002)
Anseriformes (wild ducks, geese and swans) HPAI (H5N1, H5N2) Feare and Yasué (2006); Gaidet et al. (2012)
Great apes, primates and duiker Ebola viruses Bermejo et al. (2006); Sharp and Hahn (2011)
Mosquitoes, biting flies, sandflies and ticks Numerous viruses, piroplasms and bacteria Mackenzie and Jeggo (2013) 
Gastropods Intermediate stages of parasitic schistosomes Johnson et al. (2009) 

HPAI, highly pathogenic avian influenza.

TABLE 2: Examples of wildlife taxa that are impacted by spillover infection from domestic animal or human reservoirs of disease.
Taxon group or animal Pathogen Reference
African buffalo, artiodactyls, carnivores, pinnipeds Morbilliviruses (rinderpest, pestes des petits ruminants, 

distemper)
Cleaveland et al. (2007); Kock (2006); Härkönen et al. (2006) 

Great apes Cold and influenza viruses Woodford, Butynski and Karesh 2002
Wild carnivores Canine rabies virus Randall et al. (2004)
Ungulates, primates and carnivores Mycobacterium tuberculosis complex (human and bovine) Keet et al. (2008); Nath and Chakraborty (2012); Obanda 

et al. (2013)
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2000) and bats and lyssa viruses (Calisher et al. 2006), and 
the role of communities with respect to infective agents and 
hosts, transmission and their pathogenicity has recently 
become a prominent research topic (Johnson & Thieltges 
2010; Randolph & Dobson 2012). However, when the contact 
between wild species and domestic animals or humans is 
intensified, spillover occurs with direct pathogenic impact or 
opportunity for evolution of these viruses in new hosts, as 
evidenced by the emergence of HPAI and SARS (Tang et al. 
2009). Figure 2 provides a simplified model of this process.

Conclusion
In conclusion, evidence suggests that we should not see 
wildlife as a direct source of pathogen threats, but rather as 
an indirect source of candidate pathogens. A smarter solution 
than trying to identify cryptic potential infection from wildlife 
would be to address human behaviour and actions, which are 
driving most of the emerging disease syndromes. If science 
provides the evidence and critical control points, and health 
sectors and society engage within the developing human 
landscape, pathogen emergence need not be catastrophic in 
its impact, and humans and domestic animals can continue 
to co-exist with wildlife in a rich, resilient natural world. 
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Note: There are an infinite number of candidate pathogens in the biosphere, which provide 
the raw material for evolution into human and domestic animal pathogens, frequently 
transmitting across the species barrier.

FIGURE 2: Model of pathogen evolution from the biosphere through contact 
between wildlife and domestic animals or humans. 
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